Strategiesin Aspect Oriented Programming with
AspectJ

2002-11-20
By Gustav Evertsson, pt99gev@student.bth.se

Gustav Evertsson 2002-11-20 PADO004

Contents
OO T I =\ 15 1
RO 1510 LG 1 1]\ 2
CROSSCUTTING BY DESIGN ... iteie ettt sttt s e ettt s s etaessstaeseas e eestessssessssbesssssesssssees sabesssssesssssesssnseesas 3
CATALOG OF ASPECTS . utteiieiiiutteeeeeiitteetesies sabeeessassssesssesistesessasss sasessasssssssssassaseessasssses eesssbessessasssssesssasssses sesnres 3
DESIGN BY CONTRACT AND OTHER CODING IMPROVEMENTScttiiieiiiteeieeesitees seeesisriesssssssseessessnsesses sessssesesss 3
DEVELOPMENT AIDS. ... oottt ettt seee st e s et e s s e aaee s saeassabeesastessaasessabesesas eesastessbansssbesessesssasns senees 5
[0 T 1 TR 5
LI 27X N2 6
[T = [T LT 7
RUNTIME IMPROVEMENTS . ..ottt ettt ettt e et e st esete e e sateessabessassessaseessasees sesbessetesssnsnessenesns 8
BUFFERING .vveiiiiittiies ettt e eeits eeee e sebateeessabeeeessaabaes seesasssbeeseessbasessasasbeees seababesessasbaseessaasbsesessn saabansessanbrneesssnnres 8
POOLING ...ttt ettt e et e e e e e bs eeeeeseabaeeeeesabeeeeesaabaes seesaabaseessaasbaeeessabeseeas sansbbeeeessnbeneesannrres 10
LOF.X o 11 [TSRS 10
COPING WITH CHANGE ...ttt ettt ettt e ettt tee et e e ebe s e saes s sabeesasbessasees sesaessssaeesastessnseessnrenean 12
INEW LOGGINGccutteeiiiiiiteeeeeiiittees seseittteesseabseeessaasbseeees sabbeesessastaeeesaassbessesans saseeassasbseeesseassaesessanbes sesesssssrnnssens 12
INEW POOLING......ccutteieiiiiteie e e eities ceeetitateesseatbeeeessesbaeeees sesabaeessesabeseeeaassbeeseas shbeeeassasbseeessansaaeeessants eeseesnranesnanns 12
CONGCLUSION ittt et e ettt e et e e e eteessaee 2 ebeeaabesesseessaseesasbessa abesessesssasnessstessaseessne sessaenessstessanes 14
REFERENGCES..... ..ottt ettt et e ettt e e e s sttt e s —abeeeetesssaaeeseateesaseessas sesssbeessaseessasaessabeesabes sesbeessseessbenas 15

Gustav Evertsson 2002-11-20 PADO004

Introduction

This paper is done as a part of the course Advanced Software Engineering (pad004) at
Blekinge Institute of Technology. The paper is written in a way to try to explain different
strategies with Aspect Oriented programming by showing some example written in
AspectJ[1]. All code examples in this report comes from the book ‘“Aspect-Oriented
Programming with AspectJ” by Ivan Kiselev[2].

Gustav Evertsson 2002-11-20 PADO004

Crosscutting by Design

Catalog of Aspects

Aspects can be divided into three major groups depending on what they are used for.
First we have the aspects that the final software works well without. These are called
development aspects. They are limited to only be useful during development.
Examples of these islogging, tracing and profiling.

An aspect that must be included for the system to work is called product aspects.
Examplesin this group are Authentication and Exception handling.

The third group is aspects that make the program work better but they are not required
for the program to function. These are called runtime aspects. Example of these is
aspects that raise performance like pooling, caching and buffering.

Because it is so easy to make different compile script can the development aspects be
excluded from the final version and stress tests can be done to see how much the runtime
aspects raise the performance.

Design by Contract and Other Coding Improvements

Design by contract is that all methods in the system must take care of their part. This include
that all pre condition are fulfilled such as checking that the input parameters are correct. The
most common way to do this is to have a small if statement in the beginning of all method
that checks so the parameters are not null. This can instead be moved to an aspect that can
check it for many methods with the same code.

package aspects;

publ i c aspect Null Checker
{

poi ntcut argunents(): execution(* *.*(..));
before() : argunents()

Obj ect args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++)

{
if(null == args[i])

throw new ||| egal Argunent Excepti on("The argunment is ” +
"null.");

}

The aspect only contains a small loop that goes through all the arguments and look for null. It
will cast an Illegal ArgumentException if it found one. The post-condition checking can be
conducted similarly using the after advice.

Good design techniques can also be enforsed using AspectJ static crosscutting. One example
where this can be a problem is when you designing a multi layered program and you only

Gustav Evertsson 2002-11-20 PADO004

want a layer to talk to the layer direct under it. This code below can be used to for example
see that no class jumps over the data handler layer and calls the database direct. It checks so
all calls to the getConnection method comes within the db package. There are two levels of
messages that can be generated; warnings and errors.

package aspects;
inmport java.sql.*;

publ i c aspect CodeSegregation

{

poi nt cut dbCode() : call(

Connection Driver Manager. get Connection(..));
poi ntcut badDbCode(): dbCode() && !within(db.*);
poi ntcut real | yBadDbCode(): badDbCode() && !'within(security.*) &&
'within(servlets.*);

decl are warni ng: badDbCode() : "Database code outside 'db’'
package.";

declare error : reallyBadDbCode(): "Database code here is not
permtted.";
}

Gustav Evertsson 2002-11-20 PADO004

Development Aids

The capability of aspectsto affect alot of code at once can help to devise a set of tools to help
the application development. These aspects cleanly and transparently allow us to get a better
handle on what is going on with the application [2].

Logging

The easiest is to make an aspect that picks everything, but that is normally too much. Y ou will
miss the information you are looking for in the noise of all the information because even a
small program will generate rather much outputs. So the solution to this problem is to first
make an abstract aspect that takes care of the logging and then make new logging aspects that
extend that one. This has the advantage that you can easily add new logging that is more
precise than the more simple solution. It may still not be as precise as with logging direct in
the code but the code will be cleaner and it is easier to take away the logging for the final
release. As with all output will you get some performance penalty but that is only a problem
during debugging.

package aspects;

abstract public aspect Logger

{

abstract pointcut | ogPoint();
before() : logPoint &% !w thin(Logger+)

Systemout. println(thisJoinPoint.getTarget() + », ™ +
t hi sJoi nPoint.getThis() + », ” +
t hi sJoi nPoi nt. get Si gnature());

}
}

Thisis the main logging aspects, it handle the output, in this case just to the console. Note the
additional pointcut at the advice declaration. It is explicitly set not to fire if the execution flow
isinside the logger itself to prevent unlimited recursion when the logger advice itself.

package aspects;

public aspect myLoggerl extends Logger
{

abstract pointcut |ogPoint() : execution(* nyCass.*(..));
}

package aspects;

publ i c aspect nyLogger2 extends Logger
{

abstract pointcut logPoint() : initialization(nmd ass.new(..));

}

This two aspects extends the Logger aspect and override the logPoint() pointcut to decide
what to log. The first example logs all executions of methods in the myClass class. The
second example logs when a new instance of myClass is created. You can develop an
unlimited number of logging aspects in the same way as these two examples with more
advanced pointcuts to be more accurate in the logging.

Gustav Evertsson 2002-11-20 PADO004

Tracing

A tracer can be a very useful tool when it comes to debugging a program. The output is in
some ways similar to the logging but have some more distinct functional requirements. First
of all isthat you only track method calls, and you want to have control over the stack so you
can see from where the method calls come from.

package aspects;
import java.util.*;

public aspect Tracer

{

poi ntcut tracePoint() : execution(* *.*(..)) && !'within(Tracer);
private static Map stackDepth = new HashMap();
before() : tracePoint()

Integer depth = (Integer)stackDepths. get(Thread. currentThread());
if(depth == null)

depth = new I nteger(0);
}

Systemout. println(depth.intValue() + » >> 7 +
thi sJoi nPoi nt StaticPart. getSignature());
st ackDept hs. put (Thread. current Thread(), new
I nteger (depth.intValue() + 1));

}

after() : tracePoint()

Integer depth = (Integer)stackDepths. get(Thread. currentThread());
depth = new I nteger(depth.intValue() - 1);
i f(depth.intValue() == 0)

st ackDept hs. renove(Thr ead. current Thread());

}

el se

st ackDept hs. put (Thread. current Thread(), depth);
}

Systemout. println(depth.intValue() + “ >> ™ +
t hi sJoi nPoi nt Stati vPart. get Signature());
}

private static StringBuffer ident(int num

StringBuffer ident = new StringBuffer();
for(int I =0; | < num i++)

{
i dent . append(* Y);

i dent.append(Integer.toString(num + ™ [+
Thread. current Thread() . hashCode() + “]”);
return ident;

}

This example is divided into five parts. The first is the pointcut that picks al method callsin
the program except within the aspect itself. The next part is the static counter. Thisis made as
aMap so it can work in a multithreaded environment such as JSP pages. So every thread will
have its own depth counter and the thread itself is the key in the list. This works this way

Gustav Evertsson 2002-11-20 PADO004

because an aspect is singleton as default. The next two parts is the before and after advices
that do the actual work. Before creates a new counter if it is the first call and increases the
counter. After decrease the counter in the same way and deletes the counter if it reach zero.
Thisis away of garbage collection for the counters. The last part is made to output the stack
depth and thread id so it is easy to follow the execution.

Profiling

After the tracing aspect is it not along way to make a profiling aspect too. A profiling tool is
normally divided into two parts, first data collection and then data analysis. This example here
handles only the first part.

package aspects;

import java.io.*;
i mport org.aspectj.|ang. Sof t Excepti on;

public aspect Profiler

{
pointcut prof(): call(* *.*(..)) & !'w thin(aspects.*);
Fi | eQut put St ream out ;
public Profiler() throws Fil eNot FoundException
{
out = new FileQutputStream("profile.txt");
}
before() : prof()
{
String record = "+ " +
Thr ead. current Thread() . hashCode() +" "+
Long.toString(SystemcurrentTineMIlis())+" "+
t hi sJoi nPoi nt St ati cPart. get Signature()+"\n";
try
{
out.wite(record. getBytes());
}
catch(1 OException e)
t hrow new Sof t Exception(e);
}
}
after() : prof()
{
String record ="- "+
Thr ead. current Thread() . hashCode() +" "+
Long.toString(SystemcurrentTineMI1lis())+" "+
thi sJoi nPoi nt StaticPart. getSignature()+"\n";
try
out.wite(record. getBytes());
catch(1 OException e)
t hrow new Soft Exception(e);
}
}
}

The code is fairly easy. The constructor creates a new file that then before and after writes to.
Both write the current time in milliseconds and the signature of the method. The only
difference is that before writers a + and after a— in front of the line. This file can then be read
by a parser that cal culates an average value for every method.

-7-

Gustav Evertsson

2002-11-20 PADOO4

Runtime Improvements

Here below is some ways to improve the runtime characteristics of your program. They are all
problem independent in the way that they can be used in awide range of different systems.

Buffering

This example here below handle buffering for the FileOutputStream class and picks the
write(byte[]) method. Of course can buffering be used on other output streams as well but
may need some changes in for example buffer size and time between flushing.

package aspects;
import java.io.*;
inmport java.util.*;

public aspect QutputStreanBuffering inplenents Runnable

{

private static Thread flushingThread = null;
private static final int BUFF_SI ZE=512;
public class Buffer

{
byte[] buff = null;
int counter = O;
Buf fer ()
buff = new byt e[BUFF_SI ZE] ;
}
}

private Map buffTabl e = new HashMap();

poi ntcut witeBytes(byte[] bytes):

call (void FileQutputStreamwite(byte[]))
&& ar gs(bytes)

&& !'wi t hi n(Qut put StreanBuf fering);

voi d around(byte[] bytes) throws | OException: witeBytes(bytes)
{
Fi | eQut put Stream out =
(Fi |l eCut put Streamn)t hi sJoi nPoi nt. get Target () ;
Buf fer aBuff = (Buffer) buffTable.get(out);
if(null == aBuff)

aBuff = new Buffer();
buf f Tabl e. put (out, aBuff);

}
i f(aBuff.counter + bytes.length > BUFF_SI ZE)
{
synchroni zed(out)
out.wite(aBuff.buff, 0, aBuff.counter);
out.wite(bytes);
out.wite(("*** buffer - "+aBuff.counter +
"\'n").getBytes());
}
buf f Tabl e. remove(out);
}
el se

System arraycopy(bytes, 0, aBuff.buff, aBuff.counter,
bytes. | ength);
aBuf f . counter += bytes.|ength;

Gustav Evertsson 2002-11-20 PADO004

}

if(null == flushingThread)

{
flushi ngThread = new Thread(this);
fl ushi ngThr ead. set Daenon(true);
flushingThread. start();

}

}

before() throws | OException : call(void FileCutputStreamclose())

Fi | eQut put St ream out =

(Fi |l eCut put Streamn)t hi sJoi nPoi nt. get Target () ;
Buf fer aBuff = (Buffer) buffTable.get(out);
if(null !'= aBuff)

{
synchroni zed(out)

out.wite(aBuff.buff, 0, aBuff.counter);

buf f Tabl e. renove(out);

}
}
public void run()
{
whi | e(true)
{
try
Thr ead. sl eep(3000);
flush();
}
catch(Throwabl e e) {}
}
}
void flush() throws | COException
for(lterator i=buffTable.keySet().iterator(); i.hasNext();)
{

Fi | eQut put Stream out = (FileCQutputStreanmi.next();
Buf fer aBuff = (Buffer) buffTable.get(out);
synchroni zed(out)

{

out.wite(aBuff.buff, 0, aBuff.counter);
out.wite(("*** flushed - "+aBuff.counter +
"\'n").getBytes());

i.remove();

}

protected void finalize() throws Throwabl e

flush();
super.finalize();

}

The exampleisfairly big and complicated and there are some reasons for this. First is that you
will need to have a buffer for each instance of the FileOutputStream but aspects is as default
singleton. The problem you get if you instead change the aspect so it is “pertarget” is that the
Aspect] compiler has to change in the FileOutputStream and you don’t have the source for

Gustav Evertsson 2002-11-20 PADO004

that file. And even if it could change it isit risky to change something that you don’t have the
code for. The solution is to have alist of all the buffers and keep the aspect as singleton. The
second reason is that the flushing is normally taken care of by the application and must now
be done in the aspect. This is done by starting up a thread that flushes the buffer every three
second. It will also be flushed if it is explicitly closed.

Pooling

Pooling is most used to speed up database connections by not connect to the database every
time a query is executed. This can save a lot of time if the database is used in many places
like it isin many web applications.

package aspects;

inmport java.sql.*;
import java.util.*;

public aspect Pooling

{

private static Stack pool = new Stack();

poi ntcut pool Get(): call(static
Connecti on Driver Manager. get Connection(..));
poi ntcut pool Put(): call(void Connection.close());

Connection around() throws SQ.Exception: pool Get()
{

synchroni zed(pool)

i f(pool.enpty())
{

return proceed();

}

return (Connection) pool . pop();

}

voi d around(): pool Put ()

Connection conn = (Connection)thisJoi nPoint.getTarget();
pool . push(conn);

}

This example contains a stack of connections that override the getConnection and close
methods. So every time the system asks for a connection will the aspect instead see if it
already exist one. If it has one will that be returned and if not will it be created in the normal
way. And when the system is finished will the connection instead of being disconnected be
placed in the pool so it can be reused.

Caching

The example below is from a news service there each user has it own list of filtered news
stories. So the caching must be divided so each user has its own cached list. The problem with
caching is that it is hard to make a domain independent solution that can be used for
crosscutting the whole system. But it can till be used to make a clean and transparent
performance improvement.

-10-

Gustav Evertsson 2002-11-20 PADO004

package aspects;

inmport java.sql.*;
import java.util.*;

publ i c aspect ReadCache

{

private static Map cache = new HashMap();
poi ntcut read(String user):
call (Collection StoriesDb.retrieve(String)) && args(user);
poi ntcut dirtyUser(String user):
call (* StoriesDb.savePreferences(String, ..)) && args(user);
pointcut dirtyAl():
call (* StoriesDh.saveStory(..));
Col | ection around(String user) throws SQ.Exception: read(user)
{

Collection res = (Collection)cache. get(user);

if(null == res)

{

res = proceed();
cache. put (user, res);

}

return res;
}
after(String user): dirtyUser(user)
{

cache. renove(user);
}
after(): dirtyAl()

cache. clear();
}

}

The aspects keep an item in the cache list per user. The list for a user will be inserted into the
list the first time the user tries to get something. Then if he/she changes his preferences so the
contents of the list may have changed will it the deleted and reloaded the next time that user
triesto access a story again. The cache will be deleted for all usersif anew story is saved.

-11 -

Gustav Evertsson 2002-11-20 PADO004

Coping with Change
It is not unusual that the environment around the system change. And aspect can be used to
cope this.

New Logging

This example is used in Servlets. The problem here is that you want to control the build in
logging to instead of writing to a file write to the console. This can be done by changing all
callsto the log method to instead write it to the console. The drawback is that it can be alot of
places that need to be changed. The aspect can instead pick al calls to the log method and
output the message.

package aspects;
import javax.servlet.*;
publ i c aspect NewlLoggi ng
{ voi d around(String nessage) :
call (void GenericServlet.log(String))
) C!Ell | (void ServletContext.log(String))

&& ar gs(nessage)

System out. printl n(nessage);

}
voi d around(String nmessage, Throwable ex) :
call (void GenericServlet.log(String, Throwable))

[
call (void ServletContext.log(String, Throwable))
)

&& ar gs(nessage, ex)

System out. printl n(nessage);
ex. printStackTrace(System out);

}

The logging has two log methods that must be pinked, one with only a message and a second
with a message and an exception.

New Pooling

The pooling example described before has a problem. | can’t handle bad connections. Thereis
many reasons way a connection can’t be used any more like timeouts, if the database is
restated etc. The solution for this is to check the connection before the Pooling aspects
handles them. This is done with the keyword “dominate” that tells the AspectJ compiler that
the new aspect will the executed before the Pooling aspect.

package aspects;

inmport java.sql.*;
import java.util.*;

publ i c aspect ConnectionChecki ng dom nates Pooling

{

-12 -

Gustav Evertsson

}

}

2002-11-20 PADOO4

Connection around() throws SQ.Exception: call(static
Connection Driver Manager . get Connection(..))

Connecti on conn;
do

{

conn = proceed();
}
whi | e(bad(conn));

return conn;

private bool ean bad(Connecti on conn)

{

try
{
Statenent stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQuery("SELECT 2+2");
if(rs.next())
rs.getString(l);

rs.close();
stnt.close();

}
cat ch(SQLException e)
{

return true;

return fal se;

It will go through al the connections and test them with a dummy query and if they are bad
will they be deleted from the pool.

-13-

Gustav Evertsson 2002-11-20 PADO004

Conclusion

Aspects can be a very powerful tool if it is used in the right ways. Some examples have been
described here in this report but | think we will see more examples of implementations and
new places where AOP can be used in the future. It much depends on how spread the
techniques will be among software developers.

The biggest strength with AOP that | seeisthat it can in an easy way divide the business logic
code from other types of code. This makes the Object Oriented design easier to read and
understand. The Object can be more specialized in what they are expected to do and the
aspects can take care of the rest.

| think we will see much more of AOP in the future in different areas, especially when the
bigger companies start supporting it such as Microsoft, Sun, and Borland etc. They have the
resources to build good development environments and design tools. And when more
developer’s starts to use it will it becomes a more mature devel opment method.

-14 -

Gustav Evertsson 2002-11-20 PADO004

References
1. Aspectdversion 1.1al, http://www.aspectj.org

2. lvan Kiselev, Aspect-Oriented Programming with AspectJ, 2001, Sams, ISBN: 0-672-
32410-5

-15-

